Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 6761, 2024 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-38514708

RESUMO

Voltage-gated sodium channels (NaV) are pivotal proteins responsible for initiating and transmitting action potentials. Emerging evidence suggests that proteolytic cleavage of sodium channels by calpains is pivotal in diverse physiological scenarios, including ischemia, brain injury, and neuropathic pain associated with diabetes. Despite this significance, the precise mechanism by which calpains recognize sodium channels, especially given the multiple calpain isoforms expressed in neurons, remains elusive. In this work, we show the interaction of Calpain-10 with NaV's C-terminus through a yeast 2-hybrid assay screening of a mouse brain cDNA library and in vitro by GST-pulldown. Later, we also obtained a structural and dynamic hypothesis of this interaction by modeling, docking, and molecular dynamics simulation. These results indicate that Calpain-10 interacts differentially with the C-terminus of NaV1.2 and NaV1.6. Calpain-10 interacts with NaV1.2 through domains III and T in a stable manner. In contrast, its interaction with NaV1.6 involves domains II and III, which could promote proteolysis through the Cys-catalytic site and C2 motifs.


Assuntos
Calpaína , Canais de Sódio Disparados por Voltagem , Animais , Camundongos , Potenciais de Ação , Calpaína/metabolismo , Neurônios/metabolismo , Isoformas de Proteínas/metabolismo , Canais de Sódio Disparados por Voltagem/metabolismo
2.
J Physiol ; 595(13): 4167-4187, 2017 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-28303574

RESUMO

KEY POINTS: Mutations in the gene encoding poly(A)-binding protein nuclear 1 (PABPN1) result in oculopharyngeal muscular dystrophy (OPMD). This disease is of late-onset, but the underlying mechanism is unclear. Ca2+ stimulates muscle growth and contraction and, because OPMD courses with muscle atrophy and weakness, we hypothesized that the homeostasis of Ca2+ is altered in this disorder. C2C12 myotubes were transfected with cDNAs encoding either PABPN1 or the PABPN1-17A OPMD mutation. Subsequently, they were investigated concerning not only excitation-contraction coupling (ECC) and intracellular levels of Ca2+ , but also differentiation stage and nuclear structure. PABPN1-17A gave rise to: inhibition of Ca2+ release during ECC, depletion of sarcoplasmic reticulum Ca2+ content, reduced expression of ryanodine receptors, altered nuclear morphology and incapability to stimulate myoblast fusion. PABPN1-17A failed to inhibit ECC in adult muscle fibres, suggesting that its effects are primarily related to muscle regeneration. ABSTRACT: Oculopharyngeal muscular dystrophy (OPMD) is linked to mutations in the gene encoding poly(A)-binding protein nuclear 1 (PABPN1). OPMD mutations consist of an expansion of a tract that contains 10 alanines (to 12-17). This disease courses with muscle weakness that begins in adulthood, but the underlying mechanism is unclear. In the present study, we investigated the functional effects of PABPN1 and an OPMD mutation (PABPN1-17A) using myotubes transfected with cDNAs encoding these proteins (GFP-tagged). PABPN1 stimulated myoblast fusion (100%), whereas PABPN1-17A failed to mimic this effect. Additionally, the OPMD mutation markedly altered nuclear morphology; specifically, it led to nuclei with a more convoluted and ovoid shape. Although PABPN1 and PABPN1-17A modified the expression of sarcoplasmic/endoplasmic reticulum Ca2+ -ATPase and calsequestrin, the corresponding changes did not have a clear impact on [Ca2+ ]. Interestingly, neither L-type Ca2+ channels, nor voltage-gated sarcoplasmic reticulum (SR) Ca2+ release (VGCR) was altered by PABPN1. However, PABPN1-17A produced a selective inhibition of VGCR (50%). This effect probably arises from both lower expression of RyR1 and depletion of SR Ca2+ . The latter, however, was not related to inhibition of store-operated Ca2+ entry. Both PABPN1 constructs promoted a moderated decrease in cytosolic [Ca2+ ], which apparently results from down-regulation of excitation-coupled Ca2+ entry. On the other hand, PABPN1-17A did not alter ECC in muscle fibres, suggesting that adult muscle is less prone to developing deleterious effects. These results demonstrate that PABPN1 proteins regulate essential processes during myotube formation and support the notion that OPMD involves disruption of myogenesis, nuclear structure and homeostasis of Ca2+ .


Assuntos
Fibras Musculares Esqueléticas/metabolismo , Distrofia Muscular Oculofaríngea/genética , Proteína I de Ligação a Poli(A)/genética , Animais , Canais de Cálcio Tipo L/metabolismo , Sinalização do Cálcio , Calsequestrina/metabolismo , Linhagem Celular , Núcleo Celular/metabolismo , Células Cultivadas , Acoplamento Excitação-Contração , Camundongos , Camundongos Endogâmicos BALB C , Fibras Musculares Esqueléticas/fisiologia , Mioblastos/metabolismo , Mioblastos/patologia , Mioblastos/fisiologia , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Retículo Sarcoplasmático/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo
3.
J Physiol ; 589(Pt 19): 4649-69, 2011 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-21825032

RESUMO

Central core disease (CCD) is a congenital human myopathy associated with mutations in the gene encoding the skeletal muscle ryanodine receptor (RyR1), resulting in skeletal muscle weakness and lower limb deformities. The muscle weakness can be at least partially explained by a reduced magnitude of voltage-gated Ca(2+) release (VGCR). To date, only a few studies have focused on identifying potential therapeutic agents for CCD. Therefore, in this work we investigated the potential use of the calcitonin gene related peptide (CGRP) to restore VGCR in myotubes expressing CCD RyR1 mutants. We also examined the influence of CCD mutants on Ca(2+)-dependent processes involved in myogenesis (myoblast fusion and sarcoendoplasmic reticulum Ca(2+)-ATPase isoform 2 (SERCA2) gene expression). C2C12 cells were transfected with cDNAs encoding either wild-type RyR1 or CCD mutants, and then exposed to CGRP (100 nm, 1-4 h). Expression of the I4897T mutant significantly inhibited SERCA2 gene expression and myoblast fusion, whereas the Y523S mutant exerted the opposite effect. Interestingly, both mutants clearly inhibited VGCR (50%), due to a reduction in SR Ca(2+) content. However, no major changes due to CGRP or CCD mutants were observed in I(CaL). Our data suggest that the Y523S mutant results in store depletion via decompensated SR Ca(2+) leak, while the I4897T mutant inhibits SERCA2 gene expression. Remarkably, in both cases CGRP restored VGCR, likely to have been by enhancing phospholamban (PLB) phosphorylation, SERCA activity and SR Ca(2+) content. Taken together, our data show that in the C2C12 model system, changes in excitation-contraction coupling induced by the expression of RyR1 channels bearing CCD mutations Y523S or I4897T can be reversed by CGRP.


Assuntos
Peptídeo Relacionado com Gene de Calcitonina/genética , Cálcio/metabolismo , Acoplamento Excitação-Contração/genética , Fibras Musculares Esqueléticas/fisiologia , Miopatia da Parte Central/genética , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Animais , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Canais de Cálcio Tipo L/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Linhagem Celular , Potenciais da Membrana/genética , Potenciais da Membrana/fisiologia , Camundongos , Contração Muscular/genética , Contração Muscular/fisiologia , Desenvolvimento Muscular , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiologia , Mutação , Mioblastos/metabolismo , Mioblastos/fisiologia , Miopatia da Parte Central/metabolismo , Fosforilação , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Retículo Sarcoplasmático/genética , Retículo Sarcoplasmático/metabolismo , Retículo Sarcoplasmático/fisiologia , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/genética , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Transdução de Sinais/genética , Transdução de Sinais/fisiologia
4.
Pflugers Arch ; 461(2): 235-47, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21229261

RESUMO

Previous work shows that transforming growth factor-ß1 (TGF-ß1) promotes several heart alterations, including atrial fibrillation (AF). In this work, we hypothesized that these effects might be associated with a potential modulation of Na(+) and K(+) channels. Atrial myocytes were cultured 1-2 days under either control conditions, or the presence of TGF-ß1. Subsequently, Na(+) (I(Na)) and K(+) (I(K)) currents were investigated under whole-cell patch-clamp conditions. Three K(+) currents were isolated: inward rectifier (I(Kin)), outward transitory (I(to)), and outward sustained (I(Ksus)). Interestingly, TGF-ß1 decreased (50%) the densities of I(Kin) and I(Ksus) but not of I(to). In addition, the growth factor reduced by 80% the amount of I(Na) available at -80 mV. This effect was due to a significant reduction (30%) in the maximum I(Na) recruited at very negative potentials or I(max), as well as to an increased fraction of inactivated Na(+) channels. The latter effect was, in turn, associated to a -7 mV shift in V(1/2) of inactivation. TGF-ß1 also reduced by 60% the maximum amount of intramembrane charge movement of Na(+) channels or Q(max), but did not affect the corresponding voltage dependence of activation. This suggests that TGF-ß1 promotes loss of Na(+) channels from the plasma membrane. Moreover, TGF-ß1 also reduced (50%) the expression of the principal subunit of Na(+) channels, as indicated by western blot analysis. Thus, TGF-ß1 inhibits the expression of Na(+) channels, as well as the activity of K(+) channels that give rise to I(Ksus) and I(Kin). These results may contribute to explaining the previously observed proarrhythmic effects of TGF-ß1.


Assuntos
Miócitos Cardíacos/fisiologia , Canais de Potássio/fisiologia , Canais de Sódio/fisiologia , Fator de Crescimento Transformador beta1/farmacologia , Animais , Células Cultivadas , Ativação do Canal Iônico/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , Canal de Sódio Disparado por Voltagem NAV1.5 , Técnicas de Patch-Clamp , Canais de Potássio/efeitos dos fármacos , Ratos , Ratos Wistar , Canais de Sódio/efeitos dos fármacos
5.
Curr Vasc Pharmacol ; 8(3): 394-403, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-19485922

RESUMO

Calcitonin gene related peptide (CGRP) is a vasodilator; its plasma levels are altered in several human diseases, including migraine, hypertension and diabetes. CGRP is locally released by motor neurons, and is overexpressed in response to surgical or pharmacological blockage of neuromuscular transmission. Additionally to a brief discussion with regard to the clinical relevance of CGRP, this review focuses on the effects of CGRP on skeletal muscle excitation-contraction (EC) coupling, as well as the corresponding pathophysiological consequences. EC coupling involves activation of 2 different types of calcium channels: dihydropyridine receptors (DHPRs) located at the sarcolemma, and ryanodine receptors (RyR1s) located at the sarcoplasmic reticulum (SR). In response to electrical depolarization, DHPRs activate nearby and physically bound RyR1s, allowing Ca(2+) from the SR to move into the cytosol (termed voltage-gated Ca(2+) release, or VGCR). We recently found that CGRP stimulates VGCR by 350 % in as short as 1h. This effect, which lasts for at least 48 h, is due to activation of the CGRP receptor, and requires activation of the cAMP/PKA signaling pathway. CGRP also increases the amplitude of caffeine-induced Ca(2+) release (400 %); suggesting increased SR Ca(2+) content underlies stimulation of VGCR. Interestingly, in the long-term CGRP also increases the density of sarcolemmal DHPRs (up to 30%, within 24-48 h). We propose that these CGRP effects may contribute to prevent and/or restore symptoms in central core disease (CCD); a congenital myopathy that is linked to mutations in the gene encoding RyR1.


Assuntos
Peptídeo Relacionado com Gene de Calcitonina/fisiologia , Acoplamento Excitação-Contração/fisiologia , Músculo Esquelético/inervação , Junção Neuromuscular/fisiologia , Transmissão Sináptica/fisiologia , Vasodilatação/fisiologia , Animais , Humanos , Músculo Esquelético/irrigação sanguínea , Músculo Esquelético/fisiopatologia , Junção Neuromuscular/irrigação sanguínea , Junção Neuromuscular/fisiopatologia
6.
Brain Res Mol Brain Res ; 116(1-2): 115-25, 2003 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-12941467

RESUMO

Calcium entry through L-type Ca2+ channels has been shown to increase the number of Na+ channels in GH3 cells, a clonal line of rat pituitary cells. To test whether this Ca2+ influx affects the levels of Na+ channel mRNAs, we first examined which Na+ channel subunits are expressed in GH3 cells. By using RT-PCR with specific primers, we detected transcripts for four alpha subunits (Nav1.1, Nav1.2, Nav1.3 and Nav1.6) and two auxiliary subunits (beta1 and beta3) of Na+ channels in total RNA from control GH3 cells. Next, we optimized the RT-PCR conditions to allow detection of cDNAs in the linear range of the assay. These conditions were then used to assess the transcript levels of Na+ channels after chronic exposure (72 h) of GH3 cells to the L-type Ca2+ channel blocker nimodipine (1 microM) or the L-type channel agonist Bay K 8644 (0.5 microM). Nimodipine treatment caused a moderate reduction (approximately 30%) of the mRNA for Nav1.2 and a marked reduction (approximately 70%) of the mRNA for Nav1.3, whereas treatment with Bay K 8644 produced 90-130% increases in these same mRNAs. There were no concomitant changes in the mRNAs for Nav1.1 and Nav1.6. Moreover, beta1 and beta3 mRNA levels were also unchanged. Thus, GH3 cells express multiple Na+ channel subunits and L-type Ca2+ channel activity up-regulates in a specific way the mRNAs for Nav1.2 and Nav1.3. These findings improve our knowledge on the molecular diversity of Na+ channels in pituitary cells and extend the actual view about the regulation of Na+ channel gene expression by Ca2+ influx.


Assuntos
Canais de Cálcio Tipo L/fisiologia , Proteínas do Tecido Nervoso/metabolismo , Subunidades Proteicas/metabolismo , RNA Mensageiro/metabolismo , Canais de Sódio/metabolismo , Éster Metílico do Ácido 3-Piridinacarboxílico, 1,4-Di-Hidro-2,6-Dimetil-5-Nitro-4-(2-(Trifluormetil)fenil)/farmacologia , Animais , Encéfalo/metabolismo , Agonistas dos Canais de Cálcio/farmacologia , Bloqueadores dos Canais de Cálcio/farmacologia , Linhagem Celular , Di-Hidropiridinas/farmacologia , Interações Medicamentosas , Regulação da Expressão Gênica/efeitos dos fármacos , Canal de Sódio Disparado por Voltagem NAV1.2 , Canal de Sódio Disparado por Voltagem NAV1.3 , Proteínas do Tecido Nervoso/genética , Nimodipina/farmacologia , Técnicas de Amplificação de Ácido Nucleico/métodos , Hipófise/efeitos dos fármacos , Hipófise/metabolismo , Subunidades Proteicas/genética , RNA/isolamento & purificação , Ratos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Canais de Sódio/genética , Regulação para Cima/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...